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Motivation

• N shots are fired into Armor Type 1• N shots are fired into Armor Type 1

• Penetrations are recorded as X1, …, XN

• “In future tests against a different armor, 
we want some assurance that at least one 
of the shots will have had the capability toof the shots will have had the capability to 
penetrate a certain thickness of Armor 
Type 1.”
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Introduction

What we seek is a lower limit on theWhat we seek is a lower limit on the 
probability that at least one out of k future 
shots has X>L, where

• X is the penetration into Armor Type I of a 
randomly selected experimental unit (for a 
given threat)

• L is a specified armor thickness
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Introduction

What we want is a lower limit on …
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Introduction

or, since the power function is 
decreasing on (0,1), we only need 
to consider an upper limit on

( )P X L θ≤ =
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Introduction

Treat this as a problem of estimatingTreat this as a problem of estimating 
either …

• a binomial proportion, or

• a normal probability (historical p y (
precedent has shown penetrations 
to be normally distributed)
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Upper bound for a binomial proportion

Wilson’s score interval (1927)
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Upper bound for a normal probability

Owen & Hua’s exact method (1977)

1) Based upon non-central t distribution

2) Solution requires an iterative numerical 
algorithm

3) Results are usually presented tabularly 
(e.g. Odeh & Owen [1980]), for specific 
values of

⎛ ⎞
values of

often necessitating interpolation

,1 , and ,x Ln K
s

α −⎛ ⎞− =⎜ ⎟
⎝ ⎠

UNCLASSIFIED

often necessitating interpolation



UNCLASSIFIED
Upper bound for a normal probability

100(1-α)% upper confidence limit is

n
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Upper bound for a normal probability
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where the derivative of H 
in the updated estimate 

formula equals …
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Upper bound for a normal probability

Convergence to a solution is very quick –Convergence to a solution is very quick 
accuracy to 8th decimal place usually in 4-7 

iterations.  However, programming this 
algorithm is messyalgorithm is messy.
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Upper bound for a normal probability

If we rewrite the parameter of interest as

( ) LP X L μθ −⎛ ⎞= ≤ = Φ⎜ ⎟

If we rewrite the parameter of interest as

( )P X Lθ
σ

≤ Φ⎜ ⎟
⎝ ⎠

We see that the confidence interval we areWe see that the confidence interval we are 
trying to construct is for a function of the 
armor thickness, L, and the unknown , ,
parameters, μ and σ.  Problems of this 
nature have been solved using generalized 
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Upper bound for a normal probability

Generalized inferenceGeneralized inference

(Tsui & Weerahandi, 1989;

Weerahandi, 1993)

1) Monte-Carlo method 

2) Requires construction of generalized pivot for ) q g p
the parameter of interest
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Generalized Pivots

Notation:Notation:

X = Random variable, possibly a 
vector often a set of sufficientvector, often a set of sufficient
statistics

x = Observed value of X

ξ = Parameter vector

θ = f(ξ) = Parameter of interestθ = f(ξ) = Parameter of interest
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Generalized Pivots

Let R(X; x, ξ) be a function satisfying the 
following two conditions:

1) The distribution of R is free of any unknown1) The distribution of R is free of any unknown 
parameters.

2) The observed value of R (denoted by r) ) ( y )
depends on ξ only through θ; i.e., r = θ.

Then R is said to be a generalized pivot for θ.  
The percentiles of R are used to form 

fid i t l /li it f θ
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Pivot Development

Consider the following random variable:
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The distribution of R does not depend on the
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The distribution of R does not depend on the 
unknown parameters.   So Condition 1 is satisfied.
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Pivot Development

The observed value of R is
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The observed value of R equals the parameter of interest.   
Condition 2 is satisfied and so R is a generalized pivot
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Condition 2 is satisfied, and so R is a generalized pivot.
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Pivot Development

To obtain a 100(1-α)% upper limit on

( ) LP X L μ
σ
−⎛ ⎞≤ = Φ⎜ ⎟

⎝ ⎠σ⎝ ⎠

take the 100(1-α)th percentile of Rtake the 100(1-α) percentile of R 
using Monte Carlo simulation.
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Generalized Algorithm

E.g., Monte Carlo simulation for 95th percentile of R

1) Set L1) Set L

2) Calculate         from observed data

3) Generate m samples from 2V

,x s

( )0 1Z N
1 2, , , nx x xK

3) Generate m samples from                   ,                           
where m is “large”, say m>1000.

2
1nV χ −( )0,1Z N

4) Let
1

Z L x VR
s nn

⎛ ⎞−
= Φ +⎜ ⎟⎜ ⎟−⎝ ⎠

5) Sort the values of R.
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6) The 95% upper limit for                is R([.95m]) ( )P X L≤
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Coverage Probabilities

( ) .1P X L≤ = ( ) .3P X L≤ = ( ) .5P X L≤ = ( ) .7P X L≤ = ( ) .9P X L≤ =
1
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Nominal coverage probability shown 

by horizontal solid black line.
(4000 replications, 2500 values of R)
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Comments on Coverage Probabilities

Wilson’s score limits

• Coverage oscillates wildly about nominal level due to discreteness of• Coverage oscillates wildly about nominal level due to discreteness of 
binomial distribution

Owen & Hua exact limits

• Coverage is good for all sample sizes and quantile probabilities.

Generalized limits

• Coverage is good for all sample sizes and quantile probabilities; 
tracks nearly identically with O&H exact limits.

• Hannig gives regularity conditions which guarantee asymptotic 
convergence to nominal confidence level.
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Application to Armor Testing

31 penetrations are recorded from an armor test.  The sample mean and 
standard deviation are 20.25 and 3.09, respectively.  Also, 26 penetrations 
are <23; remaining 5 are >23are <23; remaining 5 are >23.

What is the probability that at least 1 of 5 future shots will have a 
penetration value of at least 23 units?

Generalized O&H’s Wilson’s

95% UL for P(X<23) = 892 892 91995% UL for P(X<23) =          .892          .892        .919

95% LL for P(at least 1 of 5 X>23) =          .435          .436        .344

“We can be 95% confident that the probability of one or more penetrations 
exceeding 23 units when 5 rounds are fired is at least 43.5%.”

“We need to fire 15 rounds to be 95% confident that the probability of one
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We need to fire 15 rounds to be 95% confident that the probability of one 
or more penetrations exceeding 23 units is at least 80%.”
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