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What is a real random polynomial?

real random variable

fN (x) =

NX
k=0

akx
k

We will always assume the coefficients are independent.



  

Example R1
ak is real standard Gaussian random variablefN (x) =

NX
k=0

akx
k

N = 10
# of polynomials = 250



  

Example R1
ak is real standard Gaussian random variablefN (x) =

NX
k=0

akx
k

N = 50
# of polynomials = 50



  

Example R2
ak is real Gaussian random variable with variance

¡
N
k

¢
fN (x) =

NX
k=0

akx
k

ak is standard real Gaussian random variablefN (x) =

NX
k=0

ak

µ
N

k

¶ 1
2

xk

Why this polynomial?

· Probably the more natural definition (Edelman-Kostlan)

· Represents chaotic spin wavefunctions that arise in physics (Majorana)

· It has nice invariance properties.



  

Example R2
ak is standard real Gaussian random variablefN (x) =

NX
k=0

ak

µ
N

k
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xk

N = 10
# of polynomials = 250



  

Example C1

N = 10
# of polynomials = 500
Total number of zeros = 5000

fN (z) =

NX
k=0

ckz
k ck is complex standard Gaussian random variable
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Example C2
ck is complex standard Gaussian random variablefN (z) =

NX
k=0

ck

µ
N

k

¶ 1
2

zk

Why this polynomial?

· Same answers as Example R2.

· Also,
¡
N
k

¢ 1
2 zk is an orthonormal basis with respect to the usual metric on the

Riemann sphere.

(it arises naturally)



  

Example C2

N = 10
# of polynomials = 500
Total number of zeros = 5000

ck is complex standard Gaussian random variablefN (z) =

NX
k=0

ck

µ
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Example C2
ck is complex standard Gaussian random variable

N = 50
# of polynomials = 100
Total number of zeros = 5000

fN (z) =

NX
k=0

ck

µ
N
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Example C2 
Plotting Zeros on the Sphere

ck is complex standard Gaussian random variable

N = 50
# of polynomials = 100
Total number of zeros = 5000

fN (z) =

NX
k=0

ck

µ
N

k

¶ 1
2

zk



  

What questions can we ask?

Expected number of real zeros (Kac, Rice, Shub-Smale, etc.)

Hole probability (Sodin-Tsirelson, Zrebiec)

Probability of no real zeros (Dembo-Poonen-Shao-Zeitouni, Li-Shao)

Generalizations to real and complex manifolds
(Shiffman-Zelditch, Bleher-Shiffman-Zelditch, Douglas-Shiffman-Zelditch)

Distribution of zeros, correlation between zeros
(Kac, Hammersley, Edelman-Kostlan, etc.)

Higher Moments and Asymptotic Normality of (Zf ,φ)
(Sodin-Tsirelson, Shiffman-Zelditch)



  

Distribution of zeros
ak is real standard Gaussian random variablefN (x) =

NX
k=0

akx
k

E(ZfN (x)) =
1
π

q
1

x2−1 −
(N+1)2x2N

(x2N+2−1)2

Kac found a formula for E(Zf ) :

E(Zf ) = density of zeros

Note: E(·) here denotes integration w.r.t the standard real Gaussian measure
on RN+1

Let ZfN,a(x) =
X

fN,a(xj)=0

δxj



  

Example R1
ak is real standard Gaussian random variablefN (x) =

NX
k=0

akx
k

E(ZfN (x)) =
1
π

q
1

x2−1 −
(N+1)2x2N

(x2N+2−1)2



  

Example R2
ak is real standard Gaussian random variablefN (x) =

NX
k=0

ak

µ
N

k

¶ 1
2

xk

E(ZfN (x)) =
√
N
π

1
1+x2



  

Example C1
fN (z) =

NX
k=0

ckz
k ck is complex standard Gaussian random variable

E(ZfN (z))



  

Example C2
ck is complex standard Gaussian random variablefN (z) =

NX
k=0

ck

µ
N

k
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Matlab 
small N

E(ZfN (z)) =
N
π

1
(1+|z|2)2



  

Example C2
Plotting zeros on the sphere

ck is complex standard Gaussian random variablefN (z) =

NX
k=0

ck

µ
N

k

¶ 1
2

zk

E(ZfN (z)) =
N
π

1
(1+|z|2)2

E(Zf ) is constant on the unit sphere
(constant with respect to the usual
metric on S2)



  

What questions can we ask?

fN (z) =

NX
k=0

akz
k

What about the complex zeros of real polynomials?

Why?

· It is an interesting mathematical problem.

· Quantum chaos (Prosen).

· Potential to get information about real zeros (Zelditch)

real

complex



  

Complex zeros of Example R1

fN (z) =

NX
k=0

akz
k ak is real standard Gaussian random variable

(Shepp and Vanderbei)
Example C1Example R1



  

Complex Zeros of Example R1
fN (z) =

NX
k=0

akz
k ak is real standard Gaussian random variable

Example C1Example R1



  

Complex Zeros of Example R2
fN (z) =

NX
k=0

akz
k

But he assumed more general coefficients

ak is real Gaussian random variable with variance σ2k

(Prosen)

fN (z) =

NX
k=0

ak

µ
N

k

¶ 1
2

zk ak is complex standard Gaussian random variable

One choice is σ2k =
¡
N
k

¢
, which corresponds to Example R2:



  

Example R2
ak is real standard Gaussian random variablefN (z) =

NX
k=0

ak

µ
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Example R2 Example C2



  

Example R2 Plotting on Sphere
ak is real standard Gaussian random variablefN (z) =

NX
k=0

ak

µ
N
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Example R2



  

Example R2 Plotting on Sphere
ak is real standard Gaussian random variablefN (z) =

NX
k=0

ak

µ
N

k

¶ 1
2
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N = 50N = 10



  

Example
ak is real standard Gaussian random variablefN (z) =

NX
k=0

ak

µ
N

k

¶ 1
2

zk

E(ZfN(iy))



  

Notation
fN (z) =

NX
k=0

ck

µ
N

k

¶ 1
2

zk

ck is complex Gaussian random variable with associated measure dγ

fN (z) =

NX
k=0

ck

µ
N

k

¶ 1
2

zk =

NX
k=0

ak

µ
N

k

¶ 1
2

zk

1. dγcx =
1

πN+1
e−||c||

2
dc, c ∈ CN+1 (standard complex Gaussian case)

Let c = (c0, . . . , cN ) = a+ ib. Consider two special cases:

2. dγreal =
1

(2π)(N+1)/2
e−||a||

2/2da, a ∈ RN+1 (standard real Gaussian case)



  

Result in One Variable
fN (z) =

NX
k=0

ck

µ
N

k

¶ 1
2

zk

ck is complex Gaussian random variable with associated measure dγ

For z away from the real line,

Eγreal(ZfN (z))−Eγcx(ZfN (z))→ 0, as N →∞

Lemma: For z away from the real line,

Eγreal(ZfN (z)) = Eγcx(ZfN (z)) +O(e
−λzN )

for some λz > 0 .

E(Zf ) = E(
i
π
∂∂̄ log |f |)

(1+z2)N

(1+|z|2)N

PF: Two of the main ingredients:

1. Poincare-Lelong formula

2. Asymptotics of the normalized Szego kernel



  

Scaling Limit in One Variable
fN (z) =

NX
k=0

ck

µ
N

k

¶ 1
2

zk

ck is complex Gaussian random variable with associated measure dγ

Note: Prosen assumed more general Gaussian coefficients, not just these.

K∞γreal(y) = O(|y|)

Prosen: Let K∞γ (y) = lim
N→∞

1

N
Eγ(ZfN ( z√

N
)).

Then
K∞γreal(y)→ K∞γcx(y)

as |y|→∞, and for y near 0,

(Note: it is a function of only y.)



  

Scaling limit
ak is real standard Gaussian random variablefN (z) =

NX
k=0

ak

µ
N

k

¶ 1
2

zk

lim
N→∞

1

N
E
³
Z
fN(

iy√
N
)

´
E(ZfN(iy))



  

Critical Points in One Variable
Eγreal(CfN (z)) = Eγcx(CfN (z)) +O(e

−λzN ), z ∈ C\R

E(CfN (iy)) (Scaling limit)



  

Systems of Polynomials
hm,N = (f1,N , ..., fm,N) : Cm → Cm,

fq,N is a polynomial of the form

fq,N (z) =

NX
|J|=0

cqJ

µ
N

J

¶1/2
zJ

cq
J
is a complex random variable with associated measure γ.

Note: The cq
J
0s are different for each fq.

z = (z1, ..., zm)

|J | = j1 + · · ·+ jm
cq
J = c

q
j1...jm

∈ Cµ
N

J

¶
=

µ
N

j1, ..., jm

¶
=

N !

(N − j1 − ...− jm)!j1! ... jm!
zJ = z

j1
1 ...z

jm
m .



  

Main Theorem 1
Theorem 1: Let λz be a positive constant. Then

Eγreal(ZhN (z)) = Eγcx(ZhN (z)) +O(e
−λzN ),

for all z ∈ Cm\Rm.

1. Use independence

Why?

2. Use one variable case

µ
i

π

¶m
E
³
∂∂̄ log |f1| ∧ ... ∧ ∂∂̄ log |fm|

´
=

µ
i

π

¶m
E
³
∂∂̄ log |f1|

´
∧ ... ∧E

³
∂∂̄ log |fm|

´



  

Main Theorem 2

We have that, for y near 0,

K∞γreal(y) = O(||y||), m = 1

K∞γreal(y) = O(
1

||y||m ), m ≥ 2

Theorem 2: Consider K∞γreal(z) = lim
N→∞

1

N
Eγreal(ZhN ( z√

N
))

∂2

∂y2
|y| = 0, for y 6= 0 ∈ R,

∂2

∂yj∂yk
||y|| = O(

1

||y|| ), for y 6= 0 ∈ R
m,m ≥ 2.

Why?



  

A Picture
(for the two variables case)

¯̄̄
(z,w)=(iy,0)

Eγreal(ZhN (z,w)) (Scaling limit)



  

Critical Points in Several Variables

hm,N (z) is a complex random polynomial of the form

hm,N (z) =

NX
|J|=0

cJ

µ
N

J

¶1/2
zJ

hm,N : Cm → C

Instead: zeros of (f1,N , ..., fm,N ) : Cm → Cm

Note: c0Js are the same for each fq.

fq,N (z)
0s are the derivatives of hm,N (z):

fq,N (z) =
∂hm,N
∂zq

=

NX
|J|=0

cJ

µ
N

J

¶1/2 ∂

∂zq
zJ



  

Main Theorem 3
(Theorem 1 for critical points)

Let λz be a positive constant, and let γcx, and γreal be defined as before.
We have

Eγreal(ChN (z)) = Eγcx(ChN (z)) +O(e
−λzN ),

for all z ∈ Cm\Rm.

Proof: Two of the Main Ingredients:

1. Real Kac-Rice Formula

2. Asymptotics of the normalized Szego Kernel

Eγreal(fjfk) 6= 0



  

The End



  



  

Example C1

N = 10
# of polynomials = 500
Total number of zeros = 5000

fN (z) =

NX
k=0

ckz
k ck is complex standard Gaussian random variable



  

Why the unit circle?

gN (z) =

NX
k=0

μkz
k (not random)

c̃k is complex Gaussian mean μk, variance 1.f̃N (z) =

NX
k=0

c̃kz
k

Take μk → 0.



  



  

Example R2
ak is real standard Gaussian random variablefN (z) =

NX
k=0

ak

µ
N

k

¶ 1
2

zk

E(ZfN (z))
Example R2


