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Monte Carlo Integration

Consider the task of evaluating [, h(z) f(z) dz.

Idea: If f is the probability density function associated with some

random variable X, then interpret the integral as being equal to
Ey[h(X)].

How does this help? If we can sample from f, then the Strong Law of
Large Numbers states that

1 n
- E h(X;) — Ef[h(X)] w.p.lasn— o0,
n

j=1

iid
where Xl,XQ, ce ,Xn ~ f

Implicit here is that Statistics requires integration




Motivation for Importance Sampling

Question: What can block our progress along the route below?

/Rh(a;)f(a;) dw ~ %Zh(xj).




Motivation for Importance Sampling

Question: What can block our progress along the route below?

/Rh(a;)f(a;) dw ~ %Zh(xj).

Answer: Generating X, Xo,..., X, S f might be infeasible.




Importance Sampling

Let f be a density, presumed unworkable for sampling. Let g be a

density for another distribution from which we can sample. Require
that supp{g} D supp{f}. Then

| @) f(@)do

where X1, Xo, ..., X, d g, density for the instrumental distribution.




An Alternative: Markov Chain Monte Carlo

Definition: A Markov chain Monte Carlo (MCMC') method for the

simulation of a distribution f is any method producing an ergodic

Markov chain (X®)) whose stationary distribution is f.
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Introduction to Markov Chains

Fix a probability space (€2, F, P) on which we define random variables
X;:Q — X. Here X C R is called the state space and is endowed with
the usual Borel o-algebra so that (X, B(X)) is a measurable space.

Let K : X x B(X) — R be such that
e K (x,-) is a probability measure for all x € X' ; and
e K(-,A) is measurable for all A € B(X).

Then K is a transition kernel.
In case X is discrete, then K is a transition probability matrix:
K = |P,,] where

P.y=PXpt1=ylXn=2), z,yeX.




Markov Chains Defined

Definition: Given a transition kernel K, a sequence
Xo,X1,...,Xn,...1s a Markov chain, denoted by (X,,), if, for any ¢,
the conditional distribution of X; given x;_1,z;_o,..., 2 is the same
as the distribution of X; given x;_1; that is,

P(Xk;_|_1 EA|$0,$1,$2,---7331<;) —

K(xp,dx) .
A

Let Xy ~ pg. Probabilistic behavior of (X,,) is completely determined
by 1o and K. In case X is discrete, X,, ~ ugK"™ obtained by repeated

matrix multiplication.




Markov Chains: Invariant Measures

Definition: A o-finite measure 7 is tnvariant for the transition kernel
K(-,-) (and for the associated chain) if

w(B) — /){K@,B)ﬂd@, v B e B(X).

In case w(X) = 1, we say that « is a stationary distribution since

Xo ~ m implies that X,, ~ 7 for every n.




Convergence of the Markov Chain

Let (X,,) be a Markov chain having stationary distribution 7 and for
which X,, ~ P".

Question 1: What do we mean by P™* — 77

Question 2: What conditions on (X,,) suffice to ensure that
P" — 7?




Question 1: Total Variation Norm

Let p1 and po be measures on (X, B(X)).

Definition: The total variation norm is given by

|1 — p2|rv = sup  |pi(A) — pa(A4)].
AEB(X)

We take “P™ — 7”7 to mean that |P" — |y — 0 as n — oo.




Question 2: Ergodic Markov Chains

Here is an inelegant pseudo-theorem:

Claim: Let (X,,) be irreducible, recurrent, and aperiodic. Then

lim H/ K" (x dr) —

for every initial distribution pu.
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Remind Me: What is MCMC?

Definition: A Markov chain Monte Carlo (MCMC) method for the
simulation of a distribution f is any method producing an ergodic

Markov chain (X)) whose stationary distribution is f.

Let’s proceed toward an example of such a method: the

Metropolis-Hastings algorithm.




Metropolis-Hastings

Algorithm: Given z(®.
1. Generate Y; ~ q(y|z®).

2. Take
w.p. p (2, Yy);
2™, wp. 1—pE")Y),

x4+

p(z,y) = min{

fly) q(z|y)
7(2) aylo) ’1}‘

The distribution ¢ is called the instrumental (or proposal) distribution.




2 More Definitions: Detailed Balance & Reversibility

Definition: A stationary Markov chain (X,,) is reversible if the
distribution of X,, 11 conditionally on X,,1 5 = x is the same as the

distribution of X,, .1 conditionally on X,, = x.

Definition: A Markov chain with transition kernel K satisfies the

detailed balance condition if there exists a function f satisfying

K(y,z)f(y) = K(z,y)f(z)

for every (z,y).




Underpinning of Metropolis-Hastings

Theorem: Suppose that a Markov chain with transition kernel K
satisfies the detailed balance condition with f a probability density

function. Then
1. The density f is the invariant density of the chain.

2. The chain is reversible.

If follows that for every conditional distribution q whose support

contains supp(f), f is a stationary distribution of the chain (X®)

produced by the Metropolis-Hastings Algorithm.

Advance slide € then pause for proofs.




Convergence of the MH Chain

Theorem: Suppose that the Metropolis-Hastings Markov chain (X (t))
is f-irreducible.

1. If h € LY(f), then

Tlgr(lx) —Zh (X®) = /h(x)f(x)dac a.e. f.

X

. If, in addition, (X®)) is aperiodic, then

2 || 6 ) =

for every initial distribution p, where K™(z,-) denotes the kernel

TV

for n transitions.




Another Popular MCMC Method

Suppose that for some p > 1, the random vector
X =(Xy,...,X,) € X" is such that we can sample from the

corresponding univariate conditional densities fi,..., fp:
Xilry, @2y ooy i1, Tig, - - y Lp ™ filzi|ley, o, o w1, Tiq1, .. 7xp) ;

fore=1,2,...,p.

The Gibbs sampler is the name of the following algorithm that

specifies transition from X to X#+1),




The (Gibbs Sampler

Algorithm: Given x(¥) = (:z;gt), e a;g)), generate

1. Xft—'_l) ~ fl(ZC1|ZE;t), c. ,Il(jt))

2. X;Hl) ~ fo (£82|£C§t+1)7 ng(),t)a e :x;(fjll))

D. ngtﬂ) ~ fp(:cp\:vgtﬂ), . ,xz(f))

The densities f1,..., f, are called the full conditionals.

Question: Are these enough to specify the distribution of X 7
Answer: Yes; up to a normalizing constant, the Hammersley-Clifford

Theorem states that positivity is a sufficient condition.




Two Applications of MCMC (Metropolis-Hastings)

1. Sampling from a posterior on the scene space in my thesis

2. Sampling from a Pearson Type-III distribution




Target Distribution for Thesis M-H Chain

I/(X‘Yl, YQ, Yg, Y4) X Ll(Yl ‘X) LQ(YQ |X) Lg(Yg ‘X) L4(Y4|X) Vo(X).

Basic space is X =, —, (D x A)™, where D C R? is a battlefield

region of interest, A = {a1,...,an, ap} is a set of M possible target

types (ap means that no target is present), and n is the number of

targets present.




Proposal Distribution for Thesis M-H Chain

Gy | X®)

1 1
(X @) 1ND(X<t>)(?J) + wc No (X O] 1NC(X<t>)(?J)

1
twa gy Wax o) @) 0 Pr (1) Ly xo) ),

where Pr_, (+) is a probability mass function on (D x A)\ T'x.




