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Monte Carlo Integration

Consider the task of evaluating
∫

R
h(x) f(x) dx.

Idea: If f is the probability density function associated with some

random variable X , then interpret the integral as being equal to

Ef [h(X)].

How does this help? If we can sample from f , then the Strong Law of

Large Numbers states that

1

n

n
∑

j=1

h(Xj) → Ef [h(X)] w.p. 1 as n → ∞ ,

where X1, X2, . . . , Xn
iid
∼ f .

Implicit here is that Statistics requires integration



Motivation for Importance Sampling

Question: What can block our progress along the route below?

∫

R

h(x) f(x) dx ≈
1

n

n
∑

j=1

h(Xj) .



Motivation for Importance Sampling

Question: What can block our progress along the route below?

∫

R

h(x) f(x) dx ≈
1

n

n
∑

j=1

h(Xj) .

Answer: Generating X1, X2, . . . , Xn
iid
∼ f might be infeasible.



Importance Sampling

Let f be a density, presumed unworkable for sampling. Let g be a

density for another distribution from which we can sample. Require

that supp{g} ⊃ supp{f}. Then
∫

R

h(x) f(x) dx =

∫

R

h(x)
f(x)

g(x)
g(x) dx

= Ef [h(X)]

≈
1

n

n
∑

j=1

h(Xj)
f(Xj)

g(Xj)
,

where X1, X2, . . . , Xn
iid
∼ g, density for the instrumental distribution.



An Alternative: Markov Chain Monte Carlo

Definition: A Markov chain Monte Carlo (MCMC) method for the

simulation of a distribution f is any method producing an ergodic

Markov chain (X(t)) whose stationary distribution is f .
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Introduction to Markov Chains

Fix a probability space (Ω,F , P ) on which we define random variables

Xj : Ω → X . Here X ⊂ R is called the state space and is endowed with

the usual Borel σ-algebra so that
(

X ,B(X )
)

is a measurable space.

Let K : X × B(X ) → R be such that

• K(x, ·) is a probability measure for all x ∈ X ; and

• K(·, A) is measurable for all A ∈ B(X ) .

Then K is a transition kernel .

In case X is discrete, then K is a transition probability matrix :

K = [Pxy] where

Pxy = P (Xn+1 = y|Xn = x) , x, y ∈ X .



Markov Chains Defined

Definition: Given a transition kernel K, a sequence

X0, X1, . . . , Xn, . . . is a Markov chain, denoted by (Xn), if, for any t,

the conditional distribution of Xt given xt−1, xt−2, . . . , x0 is the same

as the distribution of Xt given xt−1; that is,

P (Xk+1 ∈ A |x0, x1, x2, . . . , xk) = P (Xk+1 ∈ A |xk)

=

∫

A

K(xk, dx) .

Let X0 ∼ µ0. Probabilistic behavior of (Xn) is completely determined

by µ0 and K. In case X is discrete, Xn ∼ µ0K
n obtained by repeated

matrix multiplication.



Markov Chains: Invariant Measures

Definition: A σ-finite measure π is invariant for the transition kernel

K(·, ·) (and for the associated chain) if

π(B) =

∫

X

K(x, B) π(dx) , ∀ B ∈ B(X ) .

In case π(X ) = 1, we say that π is a stationary distribution since

X0 ∼ π implies that Xn ∼ π for every n.



Convergence of the Markov Chain

Let (Xn) be a Markov chain having stationary distribution π and for

which Xn ∼ P n.

Question 1: What do we mean by P n → π ?

Question 2: What conditions on (Xn) suffice to ensure that

P n → π ?



Question 1: Total Variation Norm

Let µ1 and µ2 be measures on
(

X ,B(X )
)

.

Definition: The total variation norm is given by

||µ1 − µ2||TV = sup
A∈B(X )

|µ1(A) − µ2(A)| .

We take “P n → π” to mean that ||P n − π||TV → 0 as n → ∞.



Question 2: Ergodic Markov Chains

Here is an inelegant pseudo-theorem:

Claim: Let (Xn) be irreducible, recurrent, and aperiodic. Then

lim
n→∞

∣

∣

∣

∣

∣

∣

∣

∣

∫

X

Kn(x, ·)µ(dx) − π

∣

∣

∣

∣

∣

∣
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∣

TV

= 0

for every initial distribution µ.
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Remind Me: What is MCMC?

Definition: A Markov chain Monte Carlo (MCMC) method for the

simulation of a distribution f is any method producing an ergodic

Markov chain (X(t)) whose stationary distribution is f .

Let’s proceed toward an example of such a method: the

Metropolis-Hastings algorithm.



Metropolis-Hastings

Algorithm: Given x(t),

1. Generate Yt ∼ q(y|x(t)).

2. Take

X(t+1) =







Yt , w.p. ρ (x(t), Yt) ;

x(t) , w.p. 1 − ρ (x(t), Yt) ,

where

ρ (x, y) = min

{

f(y)

f(x)

q(x|y)

q(y|x)
, 1

}

.

The distribution q is called the instrumental (or proposal) distribution.



2 More Definitions: Detailed Balance & Reversibility

Definition: A stationary Markov chain (Xn) is reversible if the

distribution of Xn+1 conditionally on Xn+2 = x is the same as the

distribution of Xn+1 conditionally on Xn = x.

Definition: A Markov chain with transition kernel K satisfies the

detailed balance condition if there exists a function f satisfying

K(y, x)f(y) = K(x, y)f(x)

for every (x, y).



Underpinning of Metropolis-Hastings

Theorem: Suppose that a Markov chain with transition kernel K

satisfies the detailed balance condition with f a probability density

function. Then

1. The density f is the invariant density of the chain.

2. The chain is reversible.

If follows that for every conditional distribution q whose support

contains supp(f), f is a stationary distribution of the chain (X(t))

produced by the Metropolis-Hastings Algorithm.

Advance slide & then pause for proofs.



Convergence of the MH Chain

Theorem: Suppose that the Metropolis-Hastings Markov chain (X(t))

is f -irreducible.

1. If h ∈ L1(f), then

lim
T→∞

1

T

T
∑

t=1

h(X(t)) =

∫

X

h(x) f(x) dx a.e. f.

2. If, in addition, (X(t)) is aperiodic, then

lim
n→∞

∣

∣

∣

∣

∣

∣

∣

∣

∫

X

Kn(x, ·) µ(dx) − f

∣

∣

∣

∣

∣

∣

∣

∣

TV

= 0

for every initial distribution µ, where Kn(x, ·) denotes the kernel

for n transitions.



Another Popular MCMC Method

Suppose that for some p > 1, the random vector

X = (X1, . . . , Xp) ∈ Xn is such that we can sample from the

corresponding univariate conditional densities f1, . . . , fp:

Xi|x1, x2, . . . , xi−1, xi+1, . . . , xp ∼ fi(xi|x1, x2, . . . , xi−1, xi+1, . . . , xp) ,

for i = 1, 2, . . . , p.

The Gibbs sampler is the name of the following algorithm that

specifies transition from X(t) to X(t+1).



The Gibbs Sampler

Algorithm: Given x(t) = (x
(t)
1 , . . . , x

(t)
p ), generate

1. X
(t+1)
1 ∼ f1(x1|x

(t)
2 , . . . , x(t)

p )

2. X
(t+1)
2 ∼ f2(x2|x

(t+1)
1 , x

(t)
3 , . . . , x

(t+1)
p−1 )

. . .

p. X(t+1)
p ∼ fp(xp|x

(t+1)
1 , . . . , x(t)

p )

The densities f1, . . . , fp are called the full conditionals.

Question: Are these enough to specify the distribution of X ?

Answer: Yes; up to a normalizing constant, the Hammersley-Clifford

Theorem states that positivity is a sufficient condition.



Two Applications of MCMC (Metropolis-Hastings)

1. Sampling from a posterior on the scene space in my thesis

2. Sampling from a Pearson Type-III distribution



Target Distribution for Thesis M-H Chain

ν(X |Y1, Y2, Y3, Y4) ∝ L1(Y1 |X) L2(Y2 |X) L3(Y3 |X) L4(Y4 |X) ν0(X).

Basic space is X =
⋃∞

n=0 (D ×A)n, where D ⊂ R
2 is a battlefield

region of interest, A = {α1, . . . , αM , α∅} is a set of M possible target

types (α∅ means that no target is present), and n is the number of

targets present.



Proposal Distribution for Thesis M-H Chain

G(y |X(t)) =

wD

1

|ND(X(t))|
1ND(X(t))(y) + wC

1

|NC(X(t))|
1NC(X(t))(y)

+ wA

1

|NA(X(t))|
1NA(X(t))(y) + wB P T

X(t)
(τ) 1NB(X(t))(y),

where P T
X(t)

(·) is a probability mass function on (D ×A) \TX(t) .


