
On the Locality of the Prüfer Code

Craig Lennon

November 3, 2008

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 1 / 41

Talk Outline

1 Background

2 Results

3 Method

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 2 / 41

Background

Genetic/Evolutionary Algorithms

Designing algorithms informed by principles of evolution has
become a broad field in the last two decades.

My research involves investigating how useful the Prüfer code is
as a genotype in a genetic algorithm.
I will begin with some definitions.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 3 / 41

Background

Genetic/Evolutionary Algorithms

Designing algorithms informed by principles of evolution has
become a broad field in the last two decades.
My research involves investigating how useful the Prüfer code is
as a genotype in a genetic algorithm.

I will begin with some definitions.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 3 / 41

Background

Genetic/Evolutionary Algorithms

Designing algorithms informed by principles of evolution has
become a broad field in the last two decades.
My research involves investigating how useful the Prüfer code is
as a genotype in a genetic algorithm.
I will begin with some definitions.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 3 / 41

Background

Genetic algorithms

A genetic algorithm typically requires 4 things.

A genotype which represents a possible solution to the problem we
are attempting to solve.
A “fitness function" which evaluates how well the genotype solves
the problem.
A method for selecting an initial population of genotypes.
A method of generating new genotypes from the current population.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 4 / 41

Background

Genetic algorithms

A genetic algorithm typically requires 4 things.
A genotype which represents a possible solution to the problem we
are attempting to solve.

A “fitness function" which evaluates how well the genotype solves
the problem.
A method for selecting an initial population of genotypes.
A method of generating new genotypes from the current population.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 4 / 41

Background

Genetic algorithms

A genetic algorithm typically requires 4 things.
A genotype which represents a possible solution to the problem we
are attempting to solve.
A “fitness function" which evaluates how well the genotype solves
the problem.

A method for selecting an initial population of genotypes.
A method of generating new genotypes from the current population.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 4 / 41

Background

Genetic algorithms

A genetic algorithm typically requires 4 things.
A genotype which represents a possible solution to the problem we
are attempting to solve.
A “fitness function" which evaluates how well the genotype solves
the problem.
A method for selecting an initial population of genotypes.

A method of generating new genotypes from the current population.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 4 / 41

Background

Genetic algorithms

A genetic algorithm typically requires 4 things.
A genotype which represents a possible solution to the problem we
are attempting to solve.
A “fitness function" which evaluates how well the genotype solves
the problem.
A method for selecting an initial population of genotypes.
A method of generating new genotypes from the current population.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 4 / 41

Background

Example of a Genetic Algorithm

Consider the search for a minimum weight spanning tree.

Genotype: a numeric string which represents a spanning tree.
Fitness function: the sum of the weights of the edges.
Choose strings uniformly at random for initial population.
Choose new genotypes by recombination and mutation.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 5 / 41

Background

Example of a Genetic Algorithm

Consider the search for a minimum weight spanning tree.
Genotype: a numeric string which represents a spanning tree.

Fitness function: the sum of the weights of the edges.
Choose strings uniformly at random for initial population.
Choose new genotypes by recombination and mutation.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 5 / 41

Background

Example of a Genetic Algorithm

Consider the search for a minimum weight spanning tree.
Genotype: a numeric string which represents a spanning tree.
Fitness function: the sum of the weights of the edges.

Choose strings uniformly at random for initial population.
Choose new genotypes by recombination and mutation.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 5 / 41

Background

Example of a Genetic Algorithm

Consider the search for a minimum weight spanning tree.
Genotype: a numeric string which represents a spanning tree.
Fitness function: the sum of the weights of the edges.
Choose strings uniformly at random for initial population.

Choose new genotypes by recombination and mutation.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 5 / 41

Background

Example of a Genetic Algorithm

Consider the search for a minimum weight spanning tree.
Genotype: a numeric string which represents a spanning tree.
Fitness function: the sum of the weights of the edges.
Choose strings uniformly at random for initial population.
Choose new genotypes by recombination and mutation.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 5 / 41

Background

Recombination and mutation

Recombination: choose two low weight strings
(1,2,3,4,5,6,4,5,1,2,7,12), (2,5,7,7,4,2,1,3,1,1,6,6)

Our new strings are
(1,2,3,4,5,6,1,3,1,1,6,6), (2,5,7,7,4,2,4,5,1,2,7,12)

Mutation:
(1,2,3,4,5,1,1,3,1,1,6,6), (2,5,7,7,4,2,4,5,5,2,7,12)

Mutation is a small change which (ideally) helps us find a local
optimum.
Recombination is a large change which (ideally) keeps us from
getting stuck at one (or a few) local optimum.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 6 / 41

Background

Recombination and mutation

Recombination: choose two low weight strings
(1,2,3,4,5,6,4,5,1,2,7,12), (2,5,7,7,4,2,1,3,1,1,6,6)

Our new strings are
(1,2,3,4,5,6,1,3,1,1,6,6), (2,5,7,7,4,2,4,5,1,2,7,12)

Mutation:
(1,2,3,4,5,1,1,3,1,1,6,6), (2,5,7,7,4,2,4,5,5,2,7,12)

Mutation is a small change which (ideally) helps us find a local
optimum.
Recombination is a large change which (ideally) keeps us from
getting stuck at one (or a few) local optimum.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 6 / 41

Background

Recombination and mutation

Recombination: choose two low weight strings
(1,2,3,4,5,6,4,5,1,2,7,12), (2,5,7,7,4,2,1,3,1,1,6,6)

Our new strings are
(1,2,3,4,5,6,1,3,1,1,6,6), (2,5,7,7,4,2,4,5,1,2,7,12)

Mutation:
(1,2,3,4,5,1,1,3,1,1,6,6), (2,5,7,7,4,2,4,5,5,2,7,12)

Mutation is a small change which (ideally) helps us find a local
optimum.
Recombination is a large change which (ideally) keeps us from
getting stuck at one (or a few) local optimum.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 6 / 41

Background

Recombination and mutation

Recombination: choose two low weight strings
(1,2,3,4,5,6,4,5,1,2,7,12), (2,5,7,7,4,2,1,3,1,1,6,6)

Our new strings are
(1,2,3,4,5,6,1,3,1,1,6,6), (2,5,7,7,4,2,4,5,1,2,7,12)

Mutation:
(1,2,3,4,5,1,1,3,1,1,6,6), (2,5,7,7,4,2,4,5,5,2,7,12)

Mutation is a small change which (ideally) helps us find a local
optimum.

Recombination is a large change which (ideally) keeps us from
getting stuck at one (or a few) local optimum.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 6 / 41

Background

Recombination and mutation

Recombination: choose two low weight strings
(1,2,3,4,5,6,4,5,1,2,7,12), (2,5,7,7,4,2,1,3,1,1,6,6)

Our new strings are
(1,2,3,4,5,6,1,3,1,1,6,6), (2,5,7,7,4,2,4,5,1,2,7,12)

Mutation:
(1,2,3,4,5,1,1,3,1,1,6,6), (2,5,7,7,4,2,4,5,5,2,7,12)

Mutation is a small change which (ideally) helps us find a local
optimum.
Recombination is a large change which (ideally) keeps us from
getting stuck at one (or a few) local optimum.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 6 / 41

Background

What encoding method?

In our algorithm we need to decide what method we want to use to
encode our trees as numeric strings.

Maybe the best known method is the Prüfer code.
This was one of the first used for GAs.
For example it was suggested for a minimum weight spanning tree
problem in

A Note on Genetic Algorithms for Degree-Constrained Spanning
Tree Problems,
Authors Gengui Zhou and Mitsuo Gen,
The journal Network (April 1997).

Problem: with the Prüfer code, a small change in the string may
not correspond to a small change in the tree.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 7 / 41

Background

What encoding method?

In our algorithm we need to decide what method we want to use to
encode our trees as numeric strings.
Maybe the best known method is the Prüfer code.

This was one of the first used for GAs.
For example it was suggested for a minimum weight spanning tree
problem in

A Note on Genetic Algorithms for Degree-Constrained Spanning
Tree Problems,
Authors Gengui Zhou and Mitsuo Gen,
The journal Network (April 1997).

Problem: with the Prüfer code, a small change in the string may
not correspond to a small change in the tree.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 7 / 41

Background

What encoding method?

In our algorithm we need to decide what method we want to use to
encode our trees as numeric strings.
Maybe the best known method is the Prüfer code.
This was one of the first used for GAs.

For example it was suggested for a minimum weight spanning tree
problem in

A Note on Genetic Algorithms for Degree-Constrained Spanning
Tree Problems,
Authors Gengui Zhou and Mitsuo Gen,
The journal Network (April 1997).

Problem: with the Prüfer code, a small change in the string may
not correspond to a small change in the tree.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 7 / 41

Background

What encoding method?

In our algorithm we need to decide what method we want to use to
encode our trees as numeric strings.
Maybe the best known method is the Prüfer code.
This was one of the first used for GAs.
For example it was suggested for a minimum weight spanning tree
problem in

A Note on Genetic Algorithms for Degree-Constrained Spanning
Tree Problems,
Authors Gengui Zhou and Mitsuo Gen,
The journal Network (April 1997).

Problem: with the Prüfer code, a small change in the string may
not correspond to a small change in the tree.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 7 / 41

Background

What encoding method?

In our algorithm we need to decide what method we want to use to
encode our trees as numeric strings.
Maybe the best known method is the Prüfer code.
This was one of the first used for GAs.
For example it was suggested for a minimum weight spanning tree
problem in

A Note on Genetic Algorithms for Degree-Constrained Spanning
Tree Problems,
Authors Gengui Zhou and Mitsuo Gen,
The journal Network (April 1997).

Problem: with the Prüfer code, a small change in the string may
not correspond to a small change in the tree.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 7 / 41

Background

The Prüfer code

The Prüfer code is a bijection between (labeled) trees on the set
[n] and strings of length n − 2 on the set [n].

To encode a tree as a string, we repeatedly remove the lowest
number leaf and record its neighbor, stopping when we have a
single edge remaining.
We will refer to the strings which represent trees as “P-strings.”

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 8 / 41

Background

The Prüfer code

The Prüfer code is a bijection between (labeled) trees on the set
[n] and strings of length n − 2 on the set [n].

To encode a tree as a string, we repeatedly remove the lowest
number leaf and record its neighbor, stopping when we have a
single edge remaining.

We will refer to the strings which represent trees as “P-strings.”

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 8 / 41

Background

The Prüfer code

The Prüfer code is a bijection between (labeled) trees on the set
[n] and strings of length n − 2 on the set [n].

To encode a tree as a string, we repeatedly remove the lowest
number leaf and record its neighbor, stopping when we have a
single edge remaining.
We will refer to the strings which represent trees as “P-strings.”

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 8 / 41

Background

The Encoding Process

As an example we consider a tree on 9 vertices which will be
encoded as a length 7 P-string:
The tree before step 1:

9

54

13 6

7

8

2
The P-string before step 1: (, , , , , ,)

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 9 / 41

Background

The Encoding Process step 1

The tree after step 1:
9

54

13 6

7

8

The P-string after step 1: (3, , , , , ,)

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 10 / 41

Background

The Encoding Process step 2

The tree after step 2:
9

54

1 6

7

8

The P-string after step 2: (3,1, , , , ,)

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 11 / 41

Background

The Encoding Process step 3

The tree after step 3:
9

54

6

7

8

The P-string after step 3: (3,1,9, , , ,)

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 12 / 41

Background

The Encoding Process step 4

The tree after step 4:
9

5

6

7

8

The P-string after step 4: (3,1,9,9, , ,)

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 13 / 41

Background

The Encoding Process step 5

The tree after step 5:
9 6

7

8

The P-string after step 5: (3,1,9,9,9, ,)

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 14 / 41

Background

The Encoding Process step 6

The tree after step 6:
9 6 8

The P-string after step 6: (3,1,9,9,9,6,)

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 15 / 41

Background

The Encoding Process step 7

The tree after step 7:
9 6

The P-string after step 7: (3,1,9,9,9,6,6)

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 16 / 41

Background

Mutation

A mutation is the change of a single entry in a P-string: for
example changing (3,1,9,9,9,6,6) to (3,1,9,7,9,6,6)

We are interested in how much a tree changes after a mutation.
As a measure of change, we count the number of edges which
must be changed to make one tree into another:

∆(n)(T ,T ∗) := n − 1− |E(T) ∩ E(T ∗)|,

where E(T) is the edge set of tree T .

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 17 / 41

Background

Mutation

A mutation is the change of a single entry in a P-string: for
example changing (3,1,9,9,9,6,6) to (3,1,9,7,9,6,6)

We are interested in how much a tree changes after a mutation.

As a measure of change, we count the number of edges which
must be changed to make one tree into another:

∆(n)(T ,T ∗) := n − 1− |E(T) ∩ E(T ∗)|,

where E(T) is the edge set of tree T .

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 17 / 41

Background

Mutation

A mutation is the change of a single entry in a P-string: for
example changing (3,1,9,9,9,6,6) to (3,1,9,7,9,6,6)

We are interested in how much a tree changes after a mutation.
As a measure of change, we count the number of edges which
must be changed to make one tree into another:

∆(n)(T ,T ∗) := n − 1− |E(T) ∩ E(T ∗)|,

where E(T) is the edge set of tree T .

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 17 / 41

Background

Mutation

A mutation is the change of a single entry in a P-string: for
example changing (3,1,9,9,9,6,6) to (3,1,9,7,9,6,6)

We are interested in how much a tree changes after a mutation.
As a measure of change, we count the number of edges which
must be changed to make one tree into another:

∆(n)(T ,T ∗) := n − 1− |E(T) ∩ E(T ∗)|,

where E(T) is the edge set of tree T .

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 17 / 41

Background

Mutation example 1

The tree T corresponding to (3,1,9,9,9,6,6) is
9

54

13 6

7

8

2

The tree T ∗ corresponding to (3,1,9,7,9,6,6) is:
9

5

13 6

7

8

42

Here ∆(n)(T ,T ∗) = 1, so the mutation resulted in a small change
in the trees.
Sometimes, a mutation can result in a large change in the trees.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 18 / 41

Background

Mutation example 1

The tree T corresponding to (3,1,9,9,9,6,6) is
9

54

13 6

7

8

2

The tree T ∗ corresponding to (3,1,9,7,9,6,6) is:
9

5

13 6

7

8

42

Here ∆(n)(T ,T ∗) = 1, so the mutation resulted in a small change
in the trees.
Sometimes, a mutation can result in a large change in the trees.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 18 / 41

Background

Mutation example 1

The tree T corresponding to (3,1,9,9,9,6,6) is
9

54

13 6

7

8

2

The tree T ∗ corresponding to (3,1,9,7,9,6,6) is:
9

5

13 6

7

8

42

Here ∆(n)(T ,T ∗) = 1, so the mutation resulted in a small change
in the trees.

Sometimes, a mutation can result in a large change in the trees.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 18 / 41

Background

Mutation example 1

The tree T corresponding to (3,1,9,9,9,6,6) is
9

54

13 6

7

8

2

The tree T ∗ corresponding to (3,1,9,7,9,6,6) is:
9

5

13 6

7

8

42

Here ∆(n)(T ,T ∗) = 1, so the mutation resulted in a small change
in the trees.
Sometimes, a mutation can result in a large change in the trees.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 18 / 41

Background

Mutation example 2

Consider the tree T corresponding to (3,4,5,6,7,8,9)

9

8

7

6

5

4 2

3 1

and the tree T ∗ corresponding to (3,4,5,6,7,8,1):

8 7 6 5 4 3 219

Here ∆(n)(T ,T ∗) = 8, so the mutation resulted in a large change
in the trees.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 19 / 41

Background

Mutation example 2

Consider the tree T corresponding to (3,4,5,6,7,8,9)

9

8

7

6

5

4 2

3 1

and the tree T ∗ corresponding to (3,4,5,6,7,8,1):

8 7 6 5 4 3 219

Here ∆(n)(T ,T ∗) = 8, so the mutation resulted in a large change
in the trees.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 19 / 41

Background

Mutation example 2

Consider the tree T corresponding to (3,4,5,6,7,8,9)

9

8

7

6

5

4 2

3 1

and the tree T ∗ corresponding to (3,4,5,6,7,8,1):

8 7 6 5 4 3 219

Here ∆(n)(T ,T ∗) = 8, so the mutation resulted in a large change
in the trees.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 19 / 41

Background

Other tree representations

The Prüfer code is not the only way to represent trees on [n] as
strings of length n − 2 on [n].

Other codes include the Dandelion, Blob, Happy codes (which we
won’t describe here).
We want to select a code for which small changes in the
representative string correspond to small changes in the
represented tree.
A tree representation for which this holds is said to have high
locality (and if it doesn’t hold the locality is low).

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 20 / 41

Background

Other tree representations

The Prüfer code is not the only way to represent trees on [n] as
strings of length n − 2 on [n].
Other codes include the Dandelion, Blob, Happy codes (which we
won’t describe here).

We want to select a code for which small changes in the
representative string correspond to small changes in the
represented tree.
A tree representation for which this holds is said to have high
locality (and if it doesn’t hold the locality is low).

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 20 / 41

Background

Other tree representations

The Prüfer code is not the only way to represent trees on [n] as
strings of length n − 2 on [n].
Other codes include the Dandelion, Blob, Happy codes (which we
won’t describe here).
We want to select a code for which small changes in the
representative string correspond to small changes in the
represented tree.

A tree representation for which this holds is said to have high
locality (and if it doesn’t hold the locality is low).

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 20 / 41

Background

Other tree representations

The Prüfer code is not the only way to represent trees on [n] as
strings of length n − 2 on [n].
Other codes include the Dandelion, Blob, Happy codes (which we
won’t describe here).
We want to select a code for which small changes in the
representative string correspond to small changes in the
represented tree.
A tree representation for which this holds is said to have high
locality (and if it doesn’t hold the locality is low).

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 20 / 41

Background

Locality

We will say that a tree representation has high locality if mutations
almost surely result in trees whose difference, in terms of ∆(n), is
1.

Formally, we choose a method for representing trees as strings.
Let S represent the set of all ordered pairs of strings whose
coordinates differ in exactly one position.
We choose an element (S,S∗) ∈ S uniformly at random with T ,T ∗

being the trees corresponding to S,S∗.
Then ∆(n)(T ,T ∗) is a random variable with sample space S.

The tree representation under consideration has high locality if

P
(

∆(n)(T ,T ∗) = 1
)
→ 1 as n→∞.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 21 / 41

Background

Locality

We will say that a tree representation has high locality if mutations
almost surely result in trees whose difference, in terms of ∆(n), is
1.
Formally, we choose a method for representing trees as strings.

Let S represent the set of all ordered pairs of strings whose
coordinates differ in exactly one position.
We choose an element (S,S∗) ∈ S uniformly at random with T ,T ∗

being the trees corresponding to S,S∗.
Then ∆(n)(T ,T ∗) is a random variable with sample space S.

The tree representation under consideration has high locality if

P
(

∆(n)(T ,T ∗) = 1
)
→ 1 as n→∞.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 21 / 41

Background

Locality

We will say that a tree representation has high locality if mutations
almost surely result in trees whose difference, in terms of ∆(n), is
1.
Formally, we choose a method for representing trees as strings.

Let S represent the set of all ordered pairs of strings whose
coordinates differ in exactly one position.

We choose an element (S,S∗) ∈ S uniformly at random with T ,T ∗

being the trees corresponding to S,S∗.
Then ∆(n)(T ,T ∗) is a random variable with sample space S.

The tree representation under consideration has high locality if

P
(

∆(n)(T ,T ∗) = 1
)
→ 1 as n→∞.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 21 / 41

Background

Locality

We will say that a tree representation has high locality if mutations
almost surely result in trees whose difference, in terms of ∆(n), is
1.
Formally, we choose a method for representing trees as strings.

Let S represent the set of all ordered pairs of strings whose
coordinates differ in exactly one position.
We choose an element (S,S∗) ∈ S uniformly at random with T ,T ∗

being the trees corresponding to S,S∗.

Then ∆(n)(T ,T ∗) is a random variable with sample space S.
The tree representation under consideration has high locality if

P
(

∆(n)(T ,T ∗) = 1
)
→ 1 as n→∞.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 21 / 41

Background

Locality

We will say that a tree representation has high locality if mutations
almost surely result in trees whose difference, in terms of ∆(n), is
1.
Formally, we choose a method for representing trees as strings.

Let S represent the set of all ordered pairs of strings whose
coordinates differ in exactly one position.
We choose an element (S,S∗) ∈ S uniformly at random with T ,T ∗

being the trees corresponding to S,S∗.
Then ∆(n)(T ,T ∗) is a random variable with sample space S.

The tree representation under consideration has high locality if

P
(

∆(n)(T ,T ∗) = 1
)
→ 1 as n→∞.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 21 / 41

Background

Locality

We will say that a tree representation has high locality if mutations
almost surely result in trees whose difference, in terms of ∆(n), is
1.
Formally, we choose a method for representing trees as strings.

Let S represent the set of all ordered pairs of strings whose
coordinates differ in exactly one position.
We choose an element (S,S∗) ∈ S uniformly at random with T ,T ∗

being the trees corresponding to S,S∗.
Then ∆(n)(T ,T ∗) is a random variable with sample space S.

The tree representation under consideration has high locality if

P
(

∆(n)(T ,T ∗) = 1
)
→ 1 as n→∞.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 21 / 41

Background

Condition on the location of the mutation

We will find it convenient to condition on the entry of the P-string
which is mutated.

Let Sµ represent the set of all ordered pairs of strings whose
coordinates differ in position µ.
Then

P
(

∆(n) = k
∣∣µ) =

|{(S,S∗) : ∆(n)(T ,T ∗) = k} ∩ Sµ|
|Sµ|

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 22 / 41

Background

Condition on the location of the mutation

We will find it convenient to condition on the entry of the P-string
which is mutated.
Let Sµ represent the set of all ordered pairs of strings whose
coordinates differ in position µ.

Then

P
(

∆(n) = k
∣∣µ) =

|{(S,S∗) : ∆(n)(T ,T ∗) = k} ∩ Sµ|
|Sµ|

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 22 / 41

Background

Condition on the location of the mutation

We will find it convenient to condition on the entry of the P-string
which is mutated.
Let Sµ represent the set of all ordered pairs of strings whose
coordinates differ in position µ.
Then

P
(

∆(n) = k
∣∣µ) =

|{(S,S∗) : ∆(n)(T ,T ∗) = k} ∩ Sµ|
|Sµ|

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 22 / 41

Background

Numerical Evidence for the Locality of the Prüfer Code

Numerical experiments for trees with a vertex size as large as
n = 100 conducted by Evan Thompson led him to conjecture that:

lim
n→∞

P
(

∆(n) = 1
)

=
1
3
,

and further, that if µ/n→ α, then

lim
n→∞

P
(

∆(n) = 1
∣∣µ) = (1− α)2.

Later numerical experimentation led Tim Paulden and David Smith
to conjecture that

lim
n→∞

P
(

∆(n) = `
)

= O
(

n−1
)
, (∀ ` ≥ 2).

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 23 / 41

Background

Numerical Evidence for the Locality of the Prüfer Code

Numerical experiments for trees with a vertex size as large as
n = 100 conducted by Evan Thompson led him to conjecture that:

lim
n→∞

P
(

∆(n) = 1
)

=
1
3
,

and further, that if µ/n→ α, then

lim
n→∞

P
(

∆(n) = 1
∣∣µ) = (1− α)2.

Later numerical experimentation led Tim Paulden and David Smith
to conjecture that

lim
n→∞

P
(

∆(n) = `
)

= O
(

n−1
)
, (∀ ` ≥ 2).

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 23 / 41

Background

Numerical Evidence for the Locality of the Prüfer Code

Numerical experiments for trees with a vertex size as large as
n = 100 conducted by Evan Thompson led him to conjecture that:

lim
n→∞

P
(

∆(n) = 1
)

=
1
3
,

and further, that if µ/n→ α, then

lim
n→∞

P
(

∆(n) = 1
∣∣µ) = (1− α)2.

Later numerical experimentation led Tim Paulden and David Smith
to conjecture that

lim
n→∞

P
(

∆(n) = `
)

= O
(

n−1
)
, (∀ ` ≥ 2).

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 23 / 41

Background

Numerical Evidence for the Locality of the Prüfer Code

Numerical experiments for trees with a vertex size as large as
n = 100 conducted by Evan Thompson led him to conjecture that:

lim
n→∞

P
(

∆(n) = 1
)

=
1
3
,

and further, that if µ/n→ α, then

lim
n→∞

P
(

∆(n) = 1
∣∣µ) = (1− α)2.

Later numerical experimentation led Tim Paulden and David Smith
to conjecture that

lim
n→∞

P
(

∆(n) = `
)

= O
(

n−1
)
, (∀ ` ≥ 2).

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 23 / 41

Results

The Results

It is true that

P(∆ = 1 |µ) = (1− µ/n)2 + O
(

n−1/3 ln2 n
)
.

Since
∫ 1

0 (1− α)2 dα = 1/3, this estimate implies

P(∆ = 1) = 1/3 + O
(

n−1/3 ln2 n
)
.

For all ` ≥ 2,
P(∆ = `) = O

(
n−1/3 ln2 n

)
.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 24 / 41

Results

The Results

It is true that

P(∆ = 1 |µ) = (1− µ/n)2 + O
(

n−1/3 ln2 n
)
.

Since
∫ 1

0 (1− α)2 dα = 1/3, this estimate implies

P(∆ = 1) = 1/3 + O
(

n−1/3 ln2 n
)
.

For all ` ≥ 2,
P(∆ = `) = O

(
n−1/3 ln2 n

)
.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 24 / 41

Results

The Results

It is true that

P(∆ = 1 |µ) = (1− µ/n)2 + O
(

n−1/3 ln2 n
)
.

Since
∫ 1

0 (1− α)2 dα = 1/3, this estimate implies

P(∆ = 1) = 1/3 + O
(

n−1/3 ln2 n
)
.

For all ` ≥ 2,
P(∆ = `) = O

(
n−1/3 ln2 n

)
.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 24 / 41

Method

A decoding algorithm

The proof relies on a decoding algorithm.

We begin with a P-string (p1, . . . ,pn−2) and a tree which consists
only of the vertex n.
We read the P-string from right to left.
If pj is not a vertex of the tree we add it.
If pj is a vertex of the tree, we add the largest (number) vertex not in
the tree.
In either case we join the new vertex by an edge to pj+1 (where
pn−1 := n).
After placing the vertex corresponding to the reading of p1 we have
one vertex remaining, which we join by an edge to p1.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 25 / 41

Method

A decoding algorithm

The proof relies on a decoding algorithm.

We begin with a P-string (p1, . . . ,pn−2) and a tree which consists
only of the vertex n.

We read the P-string from right to left.
If pj is not a vertex of the tree we add it.
If pj is a vertex of the tree, we add the largest (number) vertex not in
the tree.
In either case we join the new vertex by an edge to pj+1 (where
pn−1 := n).
After placing the vertex corresponding to the reading of p1 we have
one vertex remaining, which we join by an edge to p1.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 25 / 41

Method

A decoding algorithm

The proof relies on a decoding algorithm.

We begin with a P-string (p1, . . . ,pn−2) and a tree which consists
only of the vertex n.
We read the P-string from right to left.

If pj is not a vertex of the tree we add it.
If pj is a vertex of the tree, we add the largest (number) vertex not in
the tree.
In either case we join the new vertex by an edge to pj+1 (where
pn−1 := n).
After placing the vertex corresponding to the reading of p1 we have
one vertex remaining, which we join by an edge to p1.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 25 / 41

Method

A decoding algorithm

The proof relies on a decoding algorithm.

We begin with a P-string (p1, . . . ,pn−2) and a tree which consists
only of the vertex n.
We read the P-string from right to left.
If pj is not a vertex of the tree we add it.

If pj is a vertex of the tree, we add the largest (number) vertex not in
the tree.
In either case we join the new vertex by an edge to pj+1 (where
pn−1 := n).
After placing the vertex corresponding to the reading of p1 we have
one vertex remaining, which we join by an edge to p1.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 25 / 41

Method

A decoding algorithm

The proof relies on a decoding algorithm.

We begin with a P-string (p1, . . . ,pn−2) and a tree which consists
only of the vertex n.
We read the P-string from right to left.
If pj is not a vertex of the tree we add it.
If pj is a vertex of the tree, we add the largest (number) vertex not in
the tree.

In either case we join the new vertex by an edge to pj+1 (where
pn−1 := n).
After placing the vertex corresponding to the reading of p1 we have
one vertex remaining, which we join by an edge to p1.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 25 / 41

Method

A decoding algorithm

The proof relies on a decoding algorithm.

We begin with a P-string (p1, . . . ,pn−2) and a tree which consists
only of the vertex n.
We read the P-string from right to left.
If pj is not a vertex of the tree we add it.
If pj is a vertex of the tree, we add the largest (number) vertex not in
the tree.
In either case we join the new vertex by an edge to pj+1 (where
pn−1 := n).

After placing the vertex corresponding to the reading of p1 we have
one vertex remaining, which we join by an edge to p1.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 25 / 41

Method

A decoding algorithm

The proof relies on a decoding algorithm.

We begin with a P-string (p1, . . . ,pn−2) and a tree which consists
only of the vertex n.
We read the P-string from right to left.
If pj is not a vertex of the tree we add it.
If pj is a vertex of the tree, we add the largest (number) vertex not in
the tree.
In either case we join the new vertex by an edge to pj+1 (where
pn−1 := n).
After placing the vertex corresponding to the reading of p1 we have
one vertex remaining, which we join by an edge to p1.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 25 / 41

Method

An example of the decoding process

We begin at step n − 1 = 8 with:
the P-string (3,1,9,9,9,6,6),
the tree T8 consisting of the vertex n = 9,
the set X8 of vertices that are not in our tree.

Step 7: since p7 = 6 is not a vertex in the tree we add it, joining it
to vertex 9 to obtain T7

9 6
At the end of step 7, we have X7 = {1,2,3,4,5,7,8}

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 26 / 41

Method

An example of the decoding process

We begin at step n − 1 = 8 with:
the P-string (3,1,9,9,9,6,6),
the tree T8 consisting of the vertex n = 9,
the set X8 of vertices that are not in our tree.

Step 7: since p7 = 6 is not a vertex in the tree we add it, joining it
to vertex 9 to obtain T7

9 6

At the end of step 7, we have X7 = {1,2,3,4,5,7,8}

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 26 / 41

Method

An example of the decoding process

We begin at step n − 1 = 8 with:
the P-string (3,1,9,9,9,6,6),
the tree T8 consisting of the vertex n = 9,
the set X8 of vertices that are not in our tree.

Step 7: since p7 = 6 is not a vertex in the tree we add it, joining it
to vertex 9 to obtain T7

9 6
At the end of step 7, we have X7 = {1,2,3,4,5,7,8}

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 26 / 41

Method

An example of the decoding process

At step 6 we read p6: (3,1,9,9,9,6,6) and look at T7

9 6
X7 = {1,2,3,4,5,7,8}

Since p6 = 6 is a vertex in the tree, we add 8 (which is the highest
vertex not in the tree), joining it to p7 = 6 to obtain T6.

9 6 8
X6 = {1,2,3,4,5,7}

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 27 / 41

Method

An example of the decoding process

At step 6 we read p6: (3,1,9,9,9,6,6) and look at T7

9 6
X7 = {1,2,3,4,5,7,8}
Since p6 = 6 is a vertex in the tree, we add 8 (which is the highest
vertex not in the tree), joining it to p7 = 6 to obtain T6.

9 6 8

X6 = {1,2,3,4,5,7}

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 27 / 41

Method

An example of the decoding process

At step 6 we read p6: (3,1,9,9,9,6,6) and look at T7

9 6
X7 = {1,2,3,4,5,7,8}
Since p6 = 6 is a vertex in the tree, we add 8 (which is the highest
vertex not in the tree), joining it to p7 = 6 to obtain T6.

9 6 8
X6 = {1,2,3,4,5,7}

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 27 / 41

Method

An example of the decoding process

At step 5 we read p5: (3,1,9,9,9,6,6) and look at our tree T6

9 6 8
X6 = {1,2,3,4,5,7}

Since p5 = 9 is a vertex in the tree, we add 7, joining it to p6 = 6
to get T5

9 6

7

8

X5 = {1,2,3,4,5}

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 28 / 41

Method

An example of the decoding process

At step 5 we read p5: (3,1,9,9,9,6,6) and look at our tree T6

9 6 8
X6 = {1,2,3,4,5,7}
Since p5 = 9 is a vertex in the tree, we add 7, joining it to p6 = 6
to get T5

9 6

7

8

X5 = {1,2,3,4,5}

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 28 / 41

Method

An example of the decoding process

At step 5 we read p5: (3,1,9,9,9,6,6) and look at our tree T6

9 6 8
X6 = {1,2,3,4,5,7}
Since p5 = 9 is a vertex in the tree, we add 7, joining it to p6 = 6
to get T5

9 6

7

8

X5 = {1,2,3,4,5}

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 28 / 41

Method

An example of the decoding process

At step 4 we read p4: (3,1,9,9,9,6,6) and examine T5

9 6

7

8

X5 = {1,2,3,4,5}

Since p4 = 9 is a vertex in the tree, we add 5, joining it to p5 = 9
to get T4

9

5

6

7

8

X4 = {1,2,3,4}

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 29 / 41

Method

An example of the decoding process

At step 4 we read p4: (3,1,9,9,9,6,6) and examine T5

9 6

7

8

X5 = {1,2,3,4,5}
Since p4 = 9 is a vertex in the tree, we add 5, joining it to p5 = 9
to get T4

9

5

6

7

8

X4 = {1,2,3,4}

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 29 / 41

Method

An example of the decoding process

At step 4 we read p4: (3,1,9,9,9,6,6) and examine T5

9 6

7

8

X5 = {1,2,3,4,5}
Since p4 = 9 is a vertex in the tree, we add 5, joining it to p5 = 9
to get T4

9

5

6

7

8

X4 = {1,2,3,4}

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 29 / 41

Method

An example of the decoding process

At step 3 we read p3: (3,1,9,9,9,6,6) and examine T4

9

5

6

7

8

X4 = {1,2,3,4}

Since p3 = 9 is a vertex in the tree, we add 4, joining it to p4 = 9
to obtain T3

9

54

6

7

8

X3 = {1,2,3}

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 30 / 41

Method

An example of the decoding process

At step 3 we read p3: (3,1,9,9,9,6,6) and examine T4

9

5

6

7

8

X4 = {1,2,3,4}
Since p3 = 9 is a vertex in the tree, we add 4, joining it to p4 = 9
to obtain T3

9

54

6

7

8

X3 = {1,2,3}

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 30 / 41

Method

An example of the decoding process

At step 3 we read p3: (3,1,9,9,9,6,6) and examine T4

9

5

6

7

8

X4 = {1,2,3,4}
Since p3 = 9 is a vertex in the tree, we add 4, joining it to p4 = 9
to obtain T3

9

54

6

7

8

X3 = {1,2,3}

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 30 / 41

Method

An example of the decoding process

At step 2 we read p2: (3,1,9,9,9,6,6) and examine T3

9

54

6

7

8

X3 = {1,2,3}

Since p2 = 1 is not a vertex in the tree, we add 1, joining it to
p3 = 9 to obtain T2

9

54

1 6

7

8

X2 = {2,3}

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 31 / 41

Method

An example of the decoding process

At step 2 we read p2: (3,1,9,9,9,6,6) and examine T3

9

54

6

7

8

X3 = {1,2,3}
Since p2 = 1 is not a vertex in the tree, we add 1, joining it to
p3 = 9 to obtain T2

9

54

1 6

7

8

X2 = {2,3}

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 31 / 41

Method

An example of the decoding process

At step 2 we read p2: (3,1,9,9,9,6,6) and examine T3

9

54

6

7

8

X3 = {1,2,3}
Since p2 = 1 is not a vertex in the tree, we add 1, joining it to
p3 = 9 to obtain T2

9

54

1 6

7

8

X2 = {2,3}

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 31 / 41

Method

An example of the decoding process

At step 1 we read p1: (3,1,9,9,9,6,6) and examine T2

9

54

1 6

7

8

X2 = {2,3}

Since p1 = 3 is not a vertex in the tree, we add 3, joining it to
p2 = 1 to obtain T1

9

54

13 6

7

8

X1 = {2}

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 32 / 41

Method

An example of the decoding process

At step 1 we read p1: (3,1,9,9,9,6,6) and examine T2

9

54

1 6

7

8

X2 = {2,3}
Since p1 = 3 is not a vertex in the tree, we add 3, joining it to
p2 = 1 to obtain T1

9

54

13 6

7

8

X1 = {2}

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 32 / 41

Method

An example of the decoding process

At step 1 we read p1: (3,1,9,9,9,6,6) and examine T2

9

54

1 6

7

8

X2 = {2,3}
Since p1 = 3 is not a vertex in the tree, we add 3, joining it to
p2 = 1 to obtain T1

9

54

13 6

7

8

X1 = {2}

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 32 / 41

Method

An example of the decoding process

At step 0 we add the last remaining vertex to T1

9

54

13 6

7

8

X2 = {2}

We join it to p1 = 3 to obtain T0 = T
9

54

13 6

7

8

2

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 33 / 41

Method

An example of the decoding process

At step 0 we add the last remaining vertex to T1

9

54

13 6

7

8

X2 = {2}
We join it to p1 = 3 to obtain T0 = T

9

54

13 6

7

8

2

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 33 / 41

Method

Benefits of the algorithm

At each step j , the algorithm constructs a subtree Tj which
depends only on pj , . . . ,pn−2.

This lets us apply the principle of deferred decisions: we can let
p1, . . . ,pj−1 remain unknown through step j .
We condition on the position of the mutation µ, and consider two
(random) elements of the set Sµ

P = (p1, . . . ,pµ−1,pµ,pµ+1, . . . ,pn−2)

P∗ = (p1, . . . ,pµ−1,p∗µ,pµ+1, . . . ,pn−2)

The first µ− 1 entries p1, . . . ,pµ−1 remain unknown.
The last n− µ− 1 entries pµ+1, . . . ,pn−2 are known and the same.
What happens when we choose pµ,p∗µ?

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 34 / 41

Method

Benefits of the algorithm

At each step j , the algorithm constructs a subtree Tj which
depends only on pj , . . . ,pn−2.

This lets us apply the principle of deferred decisions: we can let
p1, . . . ,pj−1 remain unknown through step j .

We condition on the position of the mutation µ, and consider two
(random) elements of the set Sµ

P = (p1, . . . ,pµ−1,pµ,pµ+1, . . . ,pn−2)

P∗ = (p1, . . . ,pµ−1,p∗µ,pµ+1, . . . ,pn−2)

The first µ− 1 entries p1, . . . ,pµ−1 remain unknown.
The last n− µ− 1 entries pµ+1, . . . ,pn−2 are known and the same.
What happens when we choose pµ,p∗µ?

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 34 / 41

Method

Benefits of the algorithm

At each step j , the algorithm constructs a subtree Tj which
depends only on pj , . . . ,pn−2.

This lets us apply the principle of deferred decisions: we can let
p1, . . . ,pj−1 remain unknown through step j .
We condition on the position of the mutation µ, and consider two
(random) elements of the set Sµ

P = (p1, . . . ,pµ−1,pµ,pµ+1, . . . ,pn−2)

P∗ = (p1, . . . ,pµ−1,p∗µ,pµ+1, . . . ,pn−2)

The first µ− 1 entries p1, . . . ,pµ−1 remain unknown.
The last n− µ− 1 entries pµ+1, . . . ,pn−2 are known and the same.
What happens when we choose pµ,p∗µ?

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 34 / 41

Method

Benefits of the algorithm

At each step j , the algorithm constructs a subtree Tj which
depends only on pj , . . . ,pn−2.

This lets us apply the principle of deferred decisions: we can let
p1, . . . ,pj−1 remain unknown through step j .
We condition on the position of the mutation µ, and consider two
(random) elements of the set Sµ

P = (p1, . . . ,pµ−1,pµ,pµ+1, . . . ,pn−2)

P∗ = (p1, . . . ,pµ−1,p∗µ,pµ+1, . . . ,pn−2)

The first µ− 1 entries p1, . . . ,pµ−1 remain unknown.

The last n− µ− 1 entries pµ+1, . . . ,pn−2 are known and the same.
What happens when we choose pµ,p∗µ?

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 34 / 41

Method

Benefits of the algorithm

At each step j , the algorithm constructs a subtree Tj which
depends only on pj , . . . ,pn−2.

This lets us apply the principle of deferred decisions: we can let
p1, . . . ,pj−1 remain unknown through step j .
We condition on the position of the mutation µ, and consider two
(random) elements of the set Sµ

P = (p1, . . . ,pµ−1,pµ,pµ+1, . . . ,pn−2)

P∗ = (p1, . . . ,pµ−1,p∗µ,pµ+1, . . . ,pn−2)

The first µ− 1 entries p1, . . . ,pµ−1 remain unknown.
The last n− µ− 1 entries pµ+1, . . . ,pn−2 are known and the same.

What happens when we choose pµ,p∗µ?

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 34 / 41

Method

Benefits of the algorithm

At each step j , the algorithm constructs a subtree Tj which
depends only on pj , . . . ,pn−2.

This lets us apply the principle of deferred decisions: we can let
p1, . . . ,pj−1 remain unknown through step j .
We condition on the position of the mutation µ, and consider two
(random) elements of the set Sµ

P = (p1, . . . ,pµ−1,pµ,pµ+1, . . . ,pn−2)

P∗ = (p1, . . . ,pµ−1,p∗µ,pµ+1, . . . ,pn−2)

The first µ− 1 entries p1, . . . ,pµ−1 remain unknown.
The last n− µ− 1 entries pµ+1, . . . ,pn−2 are known and the same.
What happens when we choose pµ,p∗µ?

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 34 / 41

Method

The key event

The key event is the event that both pµ,p∗µ are in
Vµ+1 ∪ {max Xµ+1} (where Vj is the vertex set of Tj)

This event, which we denote by (P,P∗) ∈ E , implies ∆(T ,T ∗) = 1.
Why?

At step µ we add the same vertex and edge to both trees
Tµ+1,T ∗µ+1.
At step µ− 1 we add the same vertex but a different edge because
pµ 6= p∗µ.
At every subsequent step we add the same vertex and edge.

This is not the only way you can have ∆(T ,T ∗) = 1.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 35 / 41

Method

The key event

The key event is the event that both pµ,p∗µ are in
Vµ+1 ∪ {max Xµ+1} (where Vj is the vertex set of Tj)
This event, which we denote by (P,P∗) ∈ E , implies ∆(T ,T ∗) = 1.

Why?
At step µ we add the same vertex and edge to both trees
Tµ+1,T ∗µ+1.
At step µ− 1 we add the same vertex but a different edge because
pµ 6= p∗µ.
At every subsequent step we add the same vertex and edge.

This is not the only way you can have ∆(T ,T ∗) = 1.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 35 / 41

Method

The key event

The key event is the event that both pµ,p∗µ are in
Vµ+1 ∪ {max Xµ+1} (where Vj is the vertex set of Tj)
This event, which we denote by (P,P∗) ∈ E , implies ∆(T ,T ∗) = 1.
Why?

At step µ we add the same vertex and edge to both trees
Tµ+1,T ∗µ+1.
At step µ− 1 we add the same vertex but a different edge because
pµ 6= p∗µ.
At every subsequent step we add the same vertex and edge.

This is not the only way you can have ∆(T ,T ∗) = 1.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 35 / 41

Method

The key event

The key event is the event that both pµ,p∗µ are in
Vµ+1 ∪ {max Xµ+1} (where Vj is the vertex set of Tj)
This event, which we denote by (P,P∗) ∈ E , implies ∆(T ,T ∗) = 1.
Why?

At step µ we add the same vertex and edge to both trees
Tµ+1,T ∗µ+1.

At step µ− 1 we add the same vertex but a different edge because
pµ 6= p∗µ.
At every subsequent step we add the same vertex and edge.

This is not the only way you can have ∆(T ,T ∗) = 1.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 35 / 41

Method

The key event

The key event is the event that both pµ,p∗µ are in
Vµ+1 ∪ {max Xµ+1} (where Vj is the vertex set of Tj)
This event, which we denote by (P,P∗) ∈ E , implies ∆(T ,T ∗) = 1.
Why?

At step µ we add the same vertex and edge to both trees
Tµ+1,T ∗µ+1.
At step µ− 1 we add the same vertex but a different edge because
pµ 6= p∗µ.

At every subsequent step we add the same vertex and edge.

This is not the only way you can have ∆(T ,T ∗) = 1.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 35 / 41

Method

The key event

The key event is the event that both pµ,p∗µ are in
Vµ+1 ∪ {max Xµ+1} (where Vj is the vertex set of Tj)
This event, which we denote by (P,P∗) ∈ E , implies ∆(T ,T ∗) = 1.
Why?

At step µ we add the same vertex and edge to both trees
Tµ+1,T ∗µ+1.
At step µ− 1 we add the same vertex but a different edge because
pµ 6= p∗µ.
At every subsequent step we add the same vertex and edge.

This is not the only way you can have ∆(T ,T ∗) = 1.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 35 / 41

Method

The key event

The key event is the event that both pµ,p∗µ are in
Vµ+1 ∪ {max Xµ+1} (where Vj is the vertex set of Tj)
This event, which we denote by (P,P∗) ∈ E , implies ∆(T ,T ∗) = 1.
Why?

At step µ we add the same vertex and edge to both trees
Tµ+1,T ∗µ+1.
At step µ− 1 we add the same vertex but a different edge because
pµ 6= p∗µ.
At every subsequent step we add the same vertex and edge.

This is not the only way you can have ∆(T ,T ∗) = 1.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 35 / 41

Method

Examining the key event

The key event is E = {pµ,p∗µ ∈ Vµ+1 ∪ {max Xµ+1}}

P (∆ = 1 |µ) ≥ P (E |µ)

≥ n − µ
n

n − µ− 1
n − 1

= (1− µ/n)2 + O
(

n−1
)

So we obtain our lower bound.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 36 / 41

Method

Examining the key event

The key event is E = {pµ,p∗µ ∈ Vµ+1 ∪ {max Xµ+1}}

P (∆ = 1 |µ) ≥ P (E |µ)

≥ n − µ
n

n − µ− 1
n − 1

= (1− µ/n)2 + O
(

n−1
)

So we obtain our lower bound.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 36 / 41

Method

Examining the key event

The key event is E = {pµ,p∗µ ∈ Vµ+1 ∪ {max Xµ+1}}

P (∆ = 1 |µ) ≥ P (E |µ)

≥ n − µ
n

n − µ− 1
n − 1

= (1− µ/n)2 + O
(

n−1
)

So we obtain our lower bound.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 36 / 41

Method

Examining the key event

The key event is E = {pµ,p∗µ ∈ Vµ+1 ∪ {max Xµ+1}}

P (∆ = 1 |µ) ≥ P (E |µ)

≥ n − µ
n

n − µ− 1
n − 1

= (1− µ/n)2 + O
(

n−1
)

So we obtain our lower bound.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 36 / 41

Method

Examining the key event

The key event is E = {pµ,p∗µ ∈ Vµ+1 ∪ {max Xµ+1}}

P (∆ = 1 |µ) ≥ P (E |µ)

≥ n − µ
n

n − µ− 1
n − 1

= (1− µ/n)2 + O
(

n−1
)

So we obtain our lower bound.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 36 / 41

Method

Examining the event Ec

For an upper bound, we want to show that

P ({∆ = `} ∩ Ec |µ) = O
(

n−1/3 ln2 n
)

(` ≥ 1).

Consider all the vertices that need to be added to Tµ,T ∗µ

Xµ = {vertices < zµ < vertices < z∗µ < more vertices}

zµ ∈ Tµ but not T ∗µ
z∗µ ∈ T ∗µ but not Tµ.
We choose entries pj (j < µ) and see what happens.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 37 / 41

Method

Examining the event Ec

For an upper bound, we want to show that

P ({∆ = `} ∩ Ec |µ) = O
(

n−1/3 ln2 n
)

(` ≥ 1).

Consider all the vertices that need to be added to Tµ,T ∗µ

Xµ = {vertices < zµ < vertices < z∗µ < more vertices}

zµ ∈ Tµ but not T ∗µ
z∗µ ∈ T ∗µ but not Tµ.

We choose entries pj (j < µ) and see what happens.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 37 / 41

Method

Examining the event Ec

For an upper bound, we want to show that

P ({∆ = `} ∩ Ec |µ) = O
(

n−1/3 ln2 n
)

(` ≥ 1).

Consider all the vertices that need to be added to Tµ,T ∗µ

Xµ = {vertices < zµ < vertices < z∗µ < more vertices}

zµ ∈ Tµ but not T ∗µ
z∗µ ∈ T ∗µ but not Tµ.
We choose entries pj (j < µ) and see what happens.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 37 / 41

Method

After choosing some vertices

When an entry pj is already in Tj+1, we add the largest vertex of
Xj+1.

So it seems likely that we should at some step τ have a set

Xτ = {vertices < zτ < vertices < z∗τ }

zτ ∈ Tτ but not T ∗τ
z∗τ ∈ T ∗τ but not Tτ .

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 38 / 41

Method

After choosing some vertices

When an entry pj is already in Tj+1, we add the largest vertex of
Xj+1.

So it seems likely that we should at some step τ have a set

Xτ = {vertices < zτ < vertices < z∗τ }

zτ ∈ Tτ but not T ∗τ
z∗τ ∈ T ∗τ but not Tτ .

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 38 / 41

Method

What happens after step τ?

Let us consider

Xτ = {vertices < zτ < vertices < z∗τ }

zτ ∈ Tτ but not T ∗τ , and z∗τ ∈ T ∗τ but not Tτ .

Now what happens if pτ−1 is in both Tτ−1,T ∗τ−1?
We add {z∗τ ,pτ} to Tτ−1, and we add {v ,pτ} to T ∗τ−1

∆ will increase by one unless pτ was the neighbor of z∗τ when it
was first added to T ∗τ−1.
This is an unlikely event, so we (probably) add different edges.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 39 / 41

Method

What happens after step τ?

Let us consider

Xτ = {vertices < zτ < vertices < z∗τ }

zτ ∈ Tτ but not T ∗τ , and z∗τ ∈ T ∗τ but not Tτ .
Now what happens if pτ−1 is in both Tτ−1,T ∗τ−1?

We add {z∗τ ,pτ} to Tτ−1, and we add {v ,pτ} to T ∗τ−1

∆ will increase by one unless pτ was the neighbor of z∗τ when it
was first added to T ∗τ−1.
This is an unlikely event, so we (probably) add different edges.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 39 / 41

Method

What happens after step τ?

Let us consider

Xτ = {vertices < zτ < vertices < z∗τ }

zτ ∈ Tτ but not T ∗τ , and z∗τ ∈ T ∗τ but not Tτ .
Now what happens if pτ−1 is in both Tτ−1,T ∗τ−1?
We add {z∗τ ,pτ} to Tτ−1, and we add {v ,pτ} to T ∗τ−1

∆ will increase by one unless pτ was the neighbor of z∗τ when it
was first added to T ∗τ−1.
This is an unlikely event, so we (probably) add different edges.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 39 / 41

Method

What happens after step τ?

Let us consider

Xτ = {vertices < zτ < vertices < z∗τ }

zτ ∈ Tτ but not T ∗τ , and z∗τ ∈ T ∗τ but not Tτ .
Now what happens if pτ−1 is in both Tτ−1,T ∗τ−1?
We add {z∗τ ,pτ} to Tτ−1, and we add {v ,pτ} to T ∗τ−1

∆ will increase by one unless pτ was the neighbor of z∗τ when it
was first added to T ∗τ−1.

This is an unlikely event, so we (probably) add different edges.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 39 / 41

Method

What happens after step τ?

Let us consider

Xτ = {vertices < zτ < vertices < z∗τ }

zτ ∈ Tτ but not T ∗τ , and z∗τ ∈ T ∗τ but not Tτ .
Now what happens if pτ−1 is in both Tτ−1,T ∗τ−1?
We add {z∗τ ,pτ} to Tτ−1, and we add {v ,pτ} to T ∗τ−1

∆ will increase by one unless pτ was the neighbor of z∗τ when it
was first added to T ∗τ−1.
This is an unlikely event, so we (probably) add different edges.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 39 / 41

Method

The key to the proof

The key to the proof is to show that we reach a point τ where we
have

Xτ = {vertices < zτ < vertices < z∗τ },

and that there are “enough” vertices between zτ and z∗τ .
Then for any fixed number `, it is likely that we choose many more
than ` values of pj ∈ Tj+1,Tj+1, each time adding a different edge
to the two trees.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 40 / 41

Method

The key to the proof

The key to the proof is to show that we reach a point τ where we
have

Xτ = {vertices < zτ < vertices < z∗τ },

and that there are “enough” vertices between zτ and z∗τ .

Then for any fixed number `, it is likely that we choose many more
than ` values of pj ∈ Tj+1,Tj+1, each time adding a different edge
to the two trees.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 40 / 41

Method

The key to the proof

The key to the proof is to show that we reach a point τ where we
have

Xτ = {vertices < zτ < vertices < z∗τ },

and that there are “enough” vertices between zτ and z∗τ .
Then for any fixed number `, it is likely that we choose many more
than ` values of pj ∈ Tj+1,Tj+1, each time adding a different edge
to the two trees.

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 40 / 41

Method

Conclusion

It is true that

P(∆ = 1 |µ) = (1− µ/n)2 + O
(

n−1/3 ln2 n
)
.

For all ` ≥ 2,
P(∆ = `) = O

(
n−1/3 ln2 n

)
.

Questions?
Thanks to Ohio State
craig.lennon@usma.edu

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 41 / 41

Method

Conclusion

It is true that

P(∆ = 1 |µ) = (1− µ/n)2 + O
(

n−1/3 ln2 n
)
.

For all ` ≥ 2,
P(∆ = `) = O

(
n−1/3 ln2 n

)
.

Questions?
Thanks to Ohio State
craig.lennon@usma.edu

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 41 / 41

Method

Conclusion

It is true that

P(∆ = 1 |µ) = (1− µ/n)2 + O
(

n−1/3 ln2 n
)
.

For all ` ≥ 2,
P(∆ = `) = O

(
n−1/3 ln2 n

)
.

Questions?
Thanks to Ohio State
craig.lennon@usma.edu

C. Lennon (USMA) Loc. of Prüfer Code November 3, 2008 41 / 41

	Background
	Results
	Method

